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Genome-wide microarrays have suggested that Emdogain regulates TGF-f target genes in gingival and palatal fibroblasts.
However, definitive support for this contention and the extent to which TGF-B signaling contributes to the effects of
Emdogain has remained elusive. We therefore studied the role of the TGF-f receptor | (TGF-BRI) kinase to mediate the effect
of Emdogain on palatal fibroblasts. Palatal fibroblasts were exposed to Emdogain with and without the inhibitor for TGF-fRI
kinase, SB431542. Emdogain caused 39 coding genes to be differentially expressed in palatal fibroblasts by microarray
analysis (p<<0.05; >10-fold). Importantly, in the presence of the TGF-BRI kinase inhibitor SB431542, Emdogain failed to cause
any significant changes in gene expression. Consistent with this mechanism, three independent TGF-BRI kinase inhibitors
and a TGF-f neutralizing antibody abrogated the increased expression of IL-11, a selected Emdogain target gene. The MAPK
inhibitors SB203580 and U0126 lowered the impact of Emdogain on IL-11 expression. The data support that TGF-BRI kinase
activity is necessary to mediate the effects of Emdogain on gene expression in vitro.
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Introduction

Emdogain consists of enamel matrix derivatives and the vehicle
propylene glycol alginate (Institut Straumann, Basel, Switzerland)
[1]. The local application of Emdogain has been shown to support
skin wound healing [2,3]. The ability of Emdogain to stimulate
soft tissue regeneration has prompted the combination of
Emdogain with palatal subepithelial connective tissue to enhance
the healing process [4-6]. Emdogain has also been successfully
used for regenerative treatment of various periodontal lesions such
as intrabony defects, class II furcations, and recessions [7-9].
However, the cellular and molecular mechanisms allowing
Emdogain to support tissue regeneration have not been clarified
so far.

In vitro studies support the assumption that Emdogain directly
targets cells that are involved in wound healing. For example,
Emdogain modulates the formation of extracellular matrix and
modulates the differentiation of mesenchymal cells [10,11].
Emdogain can be taken up by periodontal ligament fibroblasts
[12] and can change the mitogenic activity of cells [13]. Among
the genes that are expressed in response to Emdogain are
cytokines [14]. The in vitro cellular responses to Emdogain have
been summarized recently [1,15].

Microarray analyses have provided further insight into the
complex cellular response to Emdogain, as was reported for
periodontal ligament fibroblasts [16,17], osteoblast-like cell lines
(MG-63) [18], marrow stromal cells [19], and epithelial cell lines
[20]. Recently, whole genome gene expression profiling with
gingival and palatal fibroblasts has been performed, revealing
numerous genes such as IL-11 that are typically regulated by
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TGF-B [21]. Tt is thus possible that at least some of the cellular
responses to Emdogain involve TGF-f activity.

This assumption is supported by observations of neutralizing
antibodies against TGF-B substantially reducing the impact of
Emdogain on cell signaling [22], connective tissue growth factor
expression [23] or proliferation [24]. Also, SB431542, a pharma-
cologic inhibitor of the TGF-B type I receptor (TGF-BRI) kinase,
suppresses the in vitro effect of Emdogain on adipogenesis [11]
and osteoclastogenesis [25], but also of calcium channel blockers
[26]. It is thus supposed that TGF-B type I receptor is required to
mediate Emdogain-induced gene expression in palatal fibroblasts.
The key question is, to what extent?

TGF-p signaling controls multiple cellular responses, including
cell growth and differentiation [27]. Ligand binding causes the
type I and type II receptors to form a complex that initiates
activation of the cytoplasmic kinase, which in turn phosphorylates
Smad2/3. A Smad (small mothers against decapentaplegic)
complex is formed that controls the expression of target genes in
the cell nucleus. Ligand binding can also activate a non-canonical
pathway, for example, mitogen-activated protein kinase signaling
including ERK, JNK, and p38 MAPK pathways. Emdogain was
reported to activate Smad2/3 [11,28] and MAPK pathways [28],
further supporting the evidence that Emdogain stimulates TGF-3
signaling.

Existing knowledge led us to ask to what extent Emdogain
exerts its cellular responsiveness via TGF-f signaling. To answer
the question, we determined the gene expression profile of palatal
fibroblasts exposed to Emdogain with and without the presence of
the TGF-BRI kinase inhibitor SB431542. We found that cells
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exposed to SB431542 were completely shielded from the
Emdogain-induced gene expression.

Materials and Methods

Isolation of fibroblasts and exposure to Emdogain

Human palatal fibroblasts were prepared from tissue grafts
removed during periodontal surgery. Palatal grafts were harvested
from three individual patients each. Tissue explants were
cultivated in Dulbecco’s Modified Eagle Medium supplemented
with 10% fetal calf serum (PAA Laboratories, Linz, Austria) and
antibiotics. Fibroblasts that grew out from the explants and had
not undergone more than five passages were used for the
experiments. Palatal fibroblasts were plated at 30,000 cells/cm?
and incubated for 24 hours with Emdogain (Institut Straumann
AG, Basel, Switzerland) at 100 pg enamel matrix derivative per ml
or serum-free medium alone.

Ethics statement

Fibroblasts were retrieved from patients undergoing periodontal
surgery after signed informed consent and approval by the Ethics
Committee of the University of Bern.

Modulation by pharmacologic inhibitors and antibodies

Pharmacologic inhibitors for the TGF-BRI kinase were
SB431542 (Calbiochem, Merck, Billerica, MA), activin receptor-
like kinase-5 ALK) Inhibitor I (LY-364947; Enzo Life Sciences
AG, Lausen, Switzerland), and ALKS5 Inhibitor II (2-(3-(6-
Methylpyridin-2-yl)-1H-pyrazol-4-yl)-1,5-naphthyridine; ~ Enzo),
all at 10 uM. Pharmacologic inhibitors for the three main MAPK
signaling pathways were U0126, SB203580, and SP600125, all at
10 uM (Santa Cruz Biotechnology, SCBT; Santa Cruz, CA). The
smad3 inhibitor SIS3 was obtained from Calbiochem. The TGF-f
pan specific polyclonal Ab, AB-100-NA was obtained from R&D
Systems Inc. (Minneapolis, MN). The bone morphogenetic protein
(BMP) type I receptor kinase inhibitors, dorsomorphin (Sigma, St.
Louis, MO) and LDN193189 (Cayman, Ann Arbor, MI) were
used at 10 pM and 1 pM, respectively. The impact of the TGF-
BRI kinase inhibitors on cell viability was determined by the
conversion of MTT into formazan crystals [29] and Nuclear-ID
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Red/Green cell viability reagent (Enzo Life Sciences, Inc.,
Farmingdale, NY).

Microarray analysis

Total RNA was isolated using the High Pure RNA Isolation Kit
(Roche Applied Science, Rotkreuz, Switzerland). RNA quality was
determined using the Agilent 2100 Bioanalyzer (Agilent Technol-
ogies, Santa Clara, CA, USA). Microarray analysis was performed
using the Human GE 4x44K V2 Microarray Kit with SurePrint
Technology (Illumina Inc., San Diego, CA, USA) recognizing
mRNA and long intergenic non-coding RNA (lincRNA). Array
image acquisition was performed with the Agilent G2505B
Microarray Scanner and Feature Extraction software version 9.5
(Agilent). Data files were analyzed by GeneSpring GX 7.3.1.
Microarray analysis was performed at Arrows Biomedical
Deutschland GmbH (Miinster, Germany).

gRT-PCR analysis and immunoassay

For validation of the microarray results, one gene from the gene
list was selected for qRT-PCR analysis. Reverse transcription (R'T)
was performed with Transcriptor Universal cDNA Master (Roche)
and PCR was done with the FastStart Universal Probe Master
Rox (Roche) on a 7500 Real-Time PCR System (Applied
Biosystems, Carlsbad, CA, USA). Probes were designed with the
online Universal ProbeLibrary System (Roche): IL11 Forw: GGA
CAG GGA AGG GTT AAA GG, Rev: GCT CAG CAC GAC
CAG GAC; SNAII Forw: GCT GCA GGA CTC TAA TCC
AGA, Rev: ATC TCC GGA GGT GGG ATG; SNAI2 Forw:
TGG TTG CTT CAA GGA CAC AT, Rev: GCA AAT GCT
CTG TTG CAG TG; CTGF Forw: CCT GCA GGC TAG AGA
AGC AG, Rev: TGG AGA TTT TGG GAG TAC GG. TGF-B
Forw: ACT ACT ACG CCA AGG AGG TCA C, Rev: TGC
TTG AAC TTG TCA TAG ATT TCG. The mRNA levels were
calculated by normalizing to the housekeeping gene beta actin
using the AACt method. The immunoassay for human IL-11 was
obtained from Enzo Life Sciences.

Transfection with siRNA

TGF-B1 siRNA, mock siRNA and the transfection agent were
purchased from SCBT (Santa Cruz, CA). The transfection
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Figure 1. Dose- and time-response of Emdogain on IL-11 expression. Palatal fibroblasts were incubated with (A) various concentrations of
Emdogain for 24 hours and for (B) various time-points with Emdogain at 100 ug/ml. RT-PCR was performed for IL-11 **P<<0.01 compared to
Emdogain control. The data represent two experiments with a total of three donors (n=6).

doi:10.1371/journal.pone.0105672.g001
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Figure 2. Viability is maintained when cells are exposed to TGF-f§ receptor | kinase inhibitors. Palatal fibroblasts were incubated with
100 pg/ml Emdogain or serum-free medium alone and the TGF-BRI kinase inhibitors SB431542, ALK5 Inhibitor | or ALK5 Inhibitor Il. (A) MTT
conversion assay shows that the presence of the three TGF-BRI kinase inhibitors had no significant impact on cell viability. (B) The nuclear-ID Red/
Green cell viability assay confirms this finding as the distribution of viable green and dead red cells is not affected by SB431542. Experiments were

performed three times.
doi:10.1371/journal.pone.0105672.g002

protocol was followed according to the instructions of the
manufacturer. Inhibition efficacy was determined by basal
expression control of the TGF-B1-regulated genes SNAI1, SNAI2,
and CTGF. Transfected cells were exposed to Emdogain at
100 ug/ml in serum-free medium for 24 hours. Gene expression
analysis was performed targeting IL-11.

Western blot analysis

Palatal fibroblasts were serum-starved and then treated with
Emdogain for 30 minutes. Cell extracts were separated by SDS-
PAGE and transferred onto nitrocellulose membranes. Binding of
the antibody raised against phospho-smad3 (both Cell Signaling
Technology, Danvers, MA, USA) and p-actin (SCBT) were
detected with the appropriate secondary antibody directly labeled
with near-infrared dyes (Invitrogen) and detected with the
appropriate imaging system (LI-COR Biosciences).

Functional annotation and molecular network analysis
To assign biological meaning of the subset of genes, Gene
Ontology screening was performed (GO; DAVID. (david.abce.n-
ciferf.gov/home jsp): GOTERM_BP_FAT (biological process),
GOTERM_MF_FAT (molecular function), GOTERM_CC_FAT
(cellular component), and KEGG Pathway (www.genome.jp/
kegg/pathway.html). DAVID calculates a modified Fisher’s Exact
p value to demonstrate GO or molecular pathway enrichment. P
values less than 0.05 after Benjamini multiple test correction were
considered strongly enriched in the annotation category.

Statistical analysis

The numbers of differentially expressed transcripts in the
microarray data were identified (=10-fold change; p<<0.05) under
the analysis of variance and post hoc Benjamini-Hochberg false
discovery rate correction for multiple tests. RT-PCR data were
calculated with the paired T-test.

Results

Dose- and time-dependent responses of Emdogain on IL-
11 expression

To reveal the most suitable experimental conditions, palatal
fibroblasts were incubated with various concentrations of Emdo-
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gain for 24 hours (Figure 1A), and with a single concentration of
100 pg/ml for various time-points (Figure 1B). Based on the
previous findings [21], IL-11 was selected as an indicator gene for
the effects of Emdogain in vitro. The dose-response curve
confirmed the commonly used concentration of 100 pg/ml
Emdogain to provoke a maximal increase of IL-11 expression
and also the time-response curve supports the 24-hour incubation
period as ideal for this experimental set-up, prior to the genome-
wide microarray. To rule out any toxic effect of the TGF-BRI
kinase inhibitor, palatal fibroblasts were incubated with Emdogain
with and without SB431542 before life-dead staining (Figure 2A)
and MTT assay (Figure 2B) were performed.

TGF-pB receptor | kinase inhibitor suppressed the

expression of all Emdogain-regulated genes

To study the role of the TGF-BRI kinase to mediate the effect of
Emdogain in vitro, isolated palatal fibroblasts from three donors
were exposed to Emdogain with and without the inhibitor
SB431542 and a genome-wide microarray was performed. The
gene expression profiles of palatal fibroblasts revealed that
Emdogain greatly changed the expression of 39 coding genes (>
10-fold, p<<0.05, Table 1), similar to what we have recently
reported [21]. Strikingly, SB431542 completely abolished the
expression of all Emdogain-regulated genes (Table 1). Also five
non-coding Agilent Gene IDs that were regulated by Emdogain
failed to do so in the presence of SB431542 (Table 2). Together
these data suggest that the respective fibroblastic response to
Emdogain essentially requires the TGF-BRI kinase activity.

TGF-pB receptor | kinase is crucial for IL-11 expression
induced by Emdogain

In line with the microarray data, quantitative RT-PCR
confirmed the strong increase of IL-11 when palatal fibroblasts
were exposed to Emdogain (Figure 3A). Also in this setting, the
TGF-BRI kinase inhibitor SB431542 completely abolished the
impact of Emdogain on expression of IL-11 by palatal fibroblasts.
Furthermore, two other inhibitors for TGF-B receptor I kinase
(ALK5 Inhibitor I or II) also obliterated the Emdogain-stimulated
increase of IL-11. Also the presence of a neutralizing TGF-f pan-
specific polyclonal antibody reduced the Emdogain-induced IL-11
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Table 1. SB431542 suppressed the expression of coding genes regulated by Emdogain.

Gene ID Change Gene Name

wo/E wo/ESB43

1. A_23_P39955 17.0 -1.1 actin, gamma 2, smooth muscle, enteric
2. A_33_P3310929 11.5 —-1.2 ADAM metallopeptidase domain 12
3. A_23_P14083 13.1 -1.3 adhesion molecule with Ig-like domain 2
4, A_32_P105549 109 —-1.2 annexin A8 (and like 1 & 2)
5. A_33_P3385266 —10.1 1.2 ATP-binding cassette, sub-family C, member 6 pseudogene
6. A_23_P125233 10.7 —1i1 calponin 1, basic, smooth muscle
7. A_23_P151895 413 -13 cartilage intermediate layer protein, nucl. pyrophosphohydrolase
8. A_23_P121695 10.0 1.0 chemokine (C-X-C motif) ligand 13
9. A_23_P362191 —185 =21 chromosome 17 open reading frame 44 & 68
10. A_23_P251043 121 —-1.6 chromosome 20 open reading frame 39
11. A_33_P3423854 10.0 -1.3 complement component 8, beta polypeptide
12. A_23_P65518 10.2 -1.8 dapper, antagonist of beta-catenin, homolog 1 (Xenopus laevis)
13. A_23_P46936 184 -25 early growth response 2
14. A_32_P51237 197.3 —1.1 KN motif and ankyrin repeat domains 4
15. A_33_P3283833 13.1 —-17 forkhead box S1
16. A_23_P396858 17.1 1.3 frizzled homolog 8 (Drosophila)
17. A_23_P105251 18.9 =21 GLI family zinc finger 1
18. A_32_P140489 12.8 1.0 growth differentiation factor 6
19. A_24_P140608 26.3 -1.1 heparin-binding EGF-like growth factor
20. A_33_P3243887 15.7 -16 interleukin 11
21. A_33_P3260530 323 -1.2 KN motif and ankyrin repeat domains 4
22. A_24 P827037 104 —-14 leucine rich repeat containing 15
23. A_23_P6771 26.8 1.2 LIM and cysteine-rich domains 1
24. A_33_P3214334 124 1.9 lymphocyte antigen 6 complex, locus G6F
25. A_33_P3312676 14.0 -13 myelin transcription factor 1
26. A_33_P3246418 28.9 1.1 MyoD family inhibitor
27. A_33_P3224324 15.7 1.6 NADPH oxidase 4
28. A_23_P138194 26.2 -13 neutrophil cytosolic factor 2
29. A_23_P151506 222 2.7 pleckstrin 2
30. A_23_P210581 12.6 -1.2 potassium voltage-gated channel, subfamily G, member 1
31. A_24 P413126 14.7 —-2.2 prostate transmembrane protein, androgen induced 1
32. A_33_P3369178 274 —21 proteoglycan 4
33. A_24_P13041 129 25 rhotekin 2
34. A_33_P3299510 10.2 —-1.5 scleraxis homolog A (mouse); scleraxis homolog B (mouse)
35. A_24_P48204 —18.2 1.1 secreted and transmembrane 1
36. A_23_P106389 254 1.0 semaphorin 7A, GPI membrane anchor
37. A_23_P434398 -10.8 1.2 taxilin beta
38. A_32_P75264 —12.0 -1.6 transmembrane protein 26
39. A_24 P226970 174 1.0 zinc finger protein 365
Palatal fibroblasts were exposed to Emdogain (E) with and without the inhibitor SB431542 (SB43) and a genome-wide microarray was performed. The table shows the
genes with a coding sequence that are at least 10-fold changed by Emdogain. SB431542 completely abolished the expression of all Emdogain-regulated genes. The
data represent the means of one experiment with cells from three individual donors.
doi:10.1371/journal.pone.0105672.t001

expression. The immunoassay further supports this observation by blocking TGF-B1 translation by siRNA transfection did not alter
showing the decrease of IL-11 at the protein level (Figure 3B). the effect of Emdogain on IL-11 expression (Figure 3C). TGF-B1

To understand a possible autocrine function of Emdogain, siRNA decreased the basal expression of the respective target
TGF-B expression was determined and siRNA-blocking experi- genes SNAIL, SNAI2, and CTGF (data not shown). Together,
ments performed. Emdogain did not significantly change the basal these findings support the role of TGF-BRI kinase in mediating
TGF-B expression in the fibroblasts (data not shown). Moreover,
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Table 2. SB431542 suppressed the expression of non-coding sequence regulated by Emdogain.

Agilent Gene ID Change
wo/E wo/ESB43
1. A_23_P102681 14.7 —-14
2. A_23_P166779 20.6 1.4
3. A_24_P223018 —14.5 —-20
4. A_33_P3257518 15.0 —-13
5. A_33_P3402329 38.7 —-16

completely abolished the expression of all Emdogain-regulated genes.
doi:10.1371/journal.pone.0105672.t002

effects of Emdogain on gene expression in vitro, independent of
TGF-B1 produced by the palatal fibroblasts.

Smad-3 and MAPK mediate the effect of Emdogain on IL-

11 expression

We next sought to determine whether TGF-BRI kinase
downstream signaling pathways involve canonical signaling by
adding the smad-3 inhibitor SIS3. Surprisingly, SIS3 increased
Emdogain-induced IL-11 expression (Figure 4A) even though
Emdogain increased smad-3 phosphorylation in Western blot
analysis (Figure 4B). These results suggest that also the non-
canonical signaling pathway controls at least IL-11 expression. In
support of this suggestion, blocking ERK and p38 with U0126 and
SB203580, respectively, significantly reduced the effect of
Emdogain on IL-11 expression (Figure 4A). Taken together, these
results suggest that ERK and in particular p38 attenuate the
expression of Emdogain-regulated IL-11 expression in palatal
fibroblasts.

BMP receptors do not mediate the effect of Emdogain on

IL-11 expression

To further rule out that the effects of Emdogain are mediated
via BMP receptors, palatal fibroblasts were incubated with the
BMP type I receptor inhibitors dorsomorphin and LDN193189.
Neither of the two inhibitors considerably reduced the Emdogain-
induced IL-11 expression (Figure 5A). In line with this observa-
tion, recombinant BMP-2 and BMP-7 only had negligible effects
on IL-11 expression (Figure 5B). Taken together, Emdogain
effects on IL-11 expression occur independently of BMP type 1
receptors.

Three domains of gene ontology: biological process,
cellular component, and molecular function

As indicated in Tables 3-5, the 39 Emdogain-regulated coding
genes were associated with 14 biological processes, six cellular
components, and five molecular functions. The most relevant
biological process was ‘“response to wounding”, with 6 genes
involved (p=0.011), whereas the most relevant cellular compo-
nent was “intrinsic to membrane”, with 17 genes involved
(p=0.27). The highest association for a molecular function was
“cytokine activity” (p = 0.007), with chemokine ligand 13, growth
differentiation factor 6, and Interleukin-11 being involved in this
cluster. Gene ontology analysis underlined the complex cellular
response of gingival and palatal fibroblasts to Emdogain in vitro.
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Genome-wide microarray from palatal fibroblasts revealed genes with a non-coding sequence that are at least 10-fold changed by Emdogain (E). SB431542 (SB43)

Discussion

Based on studies using antibodies [22-24] or pharmacologic
inhibitors for the TGF-BRI kinase [11,25], it has been suggested
that Emdogain exerts, at least in part, its in vitro effects via a TGF-
B-like activity. These data appear to indicate that TGF-f signaling
may play an important role in the cellular responses caused by
Emdogain in vitro. In support of this assumption, the genetic
evidence presented in this study demonstrates that TGF-BRI
kinase is fundamental to mediate Emdogain effects on gene
expression in palatal fibroblasts. Our finding that in the presence
of SB431542, none of the 39 Emdogain-regulated genes reaches
the level of significance, greatly supports the concept that TGF-
BRI kinase is critically involved in mediating palatal fibroblast
responses to Emdogain.

Microarray analyses, consistent with our approach, have shown
the complex genetic response of mesenchymal [16-19,21] and
epithelial cells [20] to Emdogain in vitro. Taken together, these
studies revealed the spectrum of genes regulated by Emdogain —
some of which are typical TGF-B-regulated genes; including the
cytokine IL-11 [30]. Other examples are transcription factors such
as NOX4 [31] and PPARG [32]. These reports, along with the
finding that Emdogain demonstrates TGF-B-like activity [11,22—
25], support the hypothesis that Emdogain requires TGF-§
receptor signaling to mediate the changes in gene expression.
Our data showing that blocking TGF-BRI kinase in fibroblasts
completely suppressed the response of cells to Emdogain
corroborates this concept.

IL-11, a pleiotropic cytokine of the interleukin-6 type family
[33], has been chosen as the “indicator” gene to investigate down-
stream TGF-P signaling pathways, as reported for lung fibroblasts
[30], periodontal ligament and gingival fibroblasts [34], and bone
metastatic breast cancer cells [35]. A similar TGF-BRI-dependent
increase in IL-11 expression was observed with another crude
preparation of growth factors, bone conditioned medium [36].
Also other microarray studies demonstrate that Emdogain
supports IL-11 expression in oral fibroblasts [16,21]. In patients
with aggressive periodontitis, IL-11 was decreased in periodontal
pockets, pointing at a shift of the inflammatory equilibrium
towards a more pro-inflammatory state [37-39]. Thus, it can be
speculated that increasing IL-11 levels induced via TGF-BRI
kinase might exert beneficial effects on tissue regeneration.

TGF-BRI, when activated, forms a complex with the type II
receptor and phosphorylates Smad2/3 [27]. Consistent with
previous evidence that Emdogain activates Smad2/3 signaling
[11,28], we confirmed here that Emdogain increased Smad3
phosphorylation and that SIS3, the Smad3-inhibitor, lowered
Emdogain-induced Sema7a expression (data not shown). Surpris-
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Figure 3. TGF-§ receptor | kinase is crucial for IL-11 expression induced by Emdogain. Palatal fibroblasts were incubated with 100 ug/ml
Emdogain or serum-free medium alone and the TGF-BRI kinase inhibitors SB431542, ALK5 Inhibitor | or ALK5 Inhibitor Il and a neutralizing TGF-p pan-
specific polyclonal antibody before RT-PCR was performed for IL-11 (A). The data represent 8 experiments including 4 donors. Immunoassay for IL-11
support the data at the protein level (2 experiments with 2 donors). **P<<0.01 compared to Emdogain control (B). Palatal fibroblasts transfected with
TGF-B1 siRNA and mock siRNA similarly respond to Emdogain by an increase IL-11 expression (C). The basal expression of TGF-B1-regulated genes
SNAI1, SNAI2, and CTGF were around 50% decreased by TGF-B1 siRNA indicating that the transfection was effective (data not shown). The latter data
represent one experiment with two donors (n=2). Not shown is that Emdogain fails to change basal TGF-f1 expression.
doi:10.1371/journal.pone.0105672.g003

ingly, SIS3 increased the impact of Emdogain on IL-11 [22,28]. It remains uncertain why SIS3 increased the impact of
expression. IL-11 expression depends on the canonical pathway Emdogain on IL-11 expression.
in tumor cells [40], but also involves MAPK pathways [27,41]. BMP receptors might exert some activities of Emdogain [44,45]

Also TGF-Bl-stimulated LOX and VEGF expression involved via SMAD 1/5/8 [46]. Emdogain can increase the expression of
Smad3 but also MAPK signaling [42] [43]. In line with this BMP-2 [21,47], but decrease the expression of BMP-4 in
concept, we show that blocking of ERK and p38 lowered the mesenchymal cells [48]. EMD can further induce the expression
impact of Emdogain on IL-11 expression, and Emdogain was of all BMP receptors, particularly BMPR-2 [47]. Here, BMP
already reported to cause activation of the respective kinases inhibitors were used to delineate BMP effects from TGF-f3 and
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activin signaling [46,49]. In the present study, dorsomorphin and
LDN-193189 only marginally changed Emdogain-induced IL-11
expression. These findings support the assumption that BMP
receptor signaling is not a central pathway in this in vitro setting.
Further support for this assumption derives from our data showing
that recombinant BMP-2 and BMP-7 do not change IL-11
expression in palatal fibroblasts. However, dorsomorphin can also
inhibit TGF-B1 signaling through the ALKI pathway [50] and
prevent TGF-B-induced CTGF and COLIAL expression in
synovial fibroblasts [51]. Taken together, the effects of Emdogain
on IL-11 expression require ALK5 but not ACTR-I (ALK?2),
BMPR-IA (ALK3), or BMPR-IB (ALK 6). Besides IL-11, other
Emdogain-regulated genes might depend on different downstream
effects than ALKD) signaling, but this requires further studies.
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The next question addressed was whether Emdogain-induced
changes in gene expression are mediated via TGF-B1 produced by
the palatal fibroblasts and thus by an autocrine mechanism. This
question is based on the observation that Emdogain can stimulate
TGF-B1 expression in oral fibroblasts [24,52]. We have reason to
suggest that this is not the case. First, Emdogain failed to
significantly increase TGF-B1 expression in palatal fibroblasts.
Second, Emdogain increased IL-11 expression within only 1.5
hours. Finally, transfection with siRNA against TGF-B did not
alter the strong increase of IL-11 induced by Emdogain.
Moreover, an immunoassay raised against TGF-B1 showed
positive signals in Emdogain, which favors the hypothesis that at
least the major impact on the regulation of IL-11 directly derives
from Emdogain.
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Figure 5. BMP receptors ALK2, ALK3, and ALK6 do not mediate the effect of Emdogain on IL-11 expression. Palatal fibroblasts were
incubated with (A) 100 ug/ml Emdogain or serum-free medium alone and BMP type | receptor inhibitors dorsomorphin (DORSO; 10 uM) and
LDN193189 (LDN; 10 uM). Palatal fibroblasts were also incubated with (B) recombinant human BMP-2 and BMP-7 (both 100 ng/ml). RT-PCR was
performed for IL-11 **P<<0.01 compared to Emdogain control. The data represent at least two experiments with cells from three donors (n=6).
doi:10.1371/journal.pone.0105672.g005
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Table 3. GO Analyze Functional Annotation Clustering.

Emdogain and TGF-BRI Kinase Signaling

GOTERM_BP_FAT

Term Count % Benjamini
Response to wounding 7 171 3.9E-1
Wound healing 4 9.8 8,7E-1
Immune response 6 14.6 9,4E-1
Coagulation 3 7.3 9,2E-1
Blood coagulation 3 73 9,2E-1
Hemostasis 3 7.3 8,9E-1
Superoxide anion generation 2 4.9 8,9E-1
Regulation of body fluid levels 3 7.3 9,3E-1
Defense response 5 12.2 9,4E-1
Superoxide metabolic process 2 4.9 9,4E-1
Regulation of protein amino acid phosphorylation 3 7.3 9,3E-1
Positive regulation of cell proliferation 4 9.8 9,4E-1
Regionalization 3 73 9,4E-1
Regulation of transcription from RNA polymerase Il promoter 5 12.2 9,5E-1

doi:10.1371/journal.pone.0105672.t003

The Emdogain-regulated genes can be clustered by Gene
Ontology into functional groups related to biological processes,
cellular components, and molecular functions. For example, in line
with previous studies [21], Emdogain affects “response to
wounding”, “intrinsic to membrane”, and “cytokine activity”.
However, in the present study the threshold with 10-fold changes
in gene expression was higher than the previous 5-fold changes
[21], thus only 39 compared to 106 genes went into Gene
Ontology analysis. The overall interpretation of the Gene
Ontology data, however, is that all the observed changes in
biological processes, cellular components, and molecular functions
induced by Emdogain are mediated via TGF-BR1, in particular
ALK-5 signaling.

However, there are still many open questions. Is there one or
more molecules in Emdogain that work via TGF-BRI kinase? Is it
possible that the activation of TGF-BRI is caused by cross
activation and the initial response comes from another receptor
such as epidermal growth factor receptor [53], insulin-like growth
factor receptor [54], BMP signaling [55], Wnt signaling [56], or
integrins [57]? To what extent do other cell types exert their
response to Emdogain via TGF-BRI kinase? Does Emdogain
behave similarly in vivo, considering the implication of protease

Table 4. GO Analyze Functional Annotation Clustering.

and cofactors? Important also is the question of the clinical
relevance of the present finding.

The clinical relevance of the present observations can be based
on the assumption that Emdogain causes cellular responses similar
to pleiotropic TGF-B. Besides what is known from genetic models
[58,59], the local application of recombinant TGF-B causes the
formation of a collagen-rich tissue, for example in the skeletal
muscle [60]. These findings are consistent with the role of
Emdogain in supporting the formation of a collagen matrix in
porcine skin wound healing models [3]. It is thus reasonable to
assume that Emdogain and recombinant TGF-B are similar in
their ability to stimulate the formation of a collagen-rich
extracellular matrix. Additional work is required to determine to
which extent, and if at all, the in vivo response to Emdogain is
mediated by ligands stimulating TGF-B receptor signaling in the
respective target cell.

In summary, our findings suggest that the in vitro cellular
response of palatal fibroblasts to Emdogain exclusively depends on
TGF-BRI kinase signaling. It will now be important to determine
why the genetic response of >100 genes in fibroblasts to the
complex composition of the xenogeneic preparation of enamel
matrix derivative exclusively depends on the bottleneck of TGF-3
receptor signaling. The complexity of the composition of the

GOTERM_CC_FAT

Term Count % Benjamini
Extracellular space 7 171 9.9E-2
Extracellular region part 7 17.1 2,4E-1
Plasma membrane 14 34.1 2,6E-1
Intrinsic to membrane 17 415 3,4E-1
Extracellular region 9 22.0 3,3E-1
Integral to membrane 16 39.0 3,8E-1

doi:10.1371/journal.pone.0105672.t004
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Table 5. GO Analyze Functional Annotation Clustering.

Emdogain and TGF-BRI Kinase Signaling

GOTERM_MF_FAT

Term Count % Benjamini
Calcium-dependent phospholipid binding 3 7.3 1.3E-1
Cytokine activity 4 9.8 3.2E-1
Oxidoreductase activity, acting on NADH or NADPH 2 4.9 5.4E-1
Growth factor activity 3 7.3 6.8E-1
Phospholipid binding 3 7.3 6.7E-1

doi:10.1371/journal.pone.0105672.t005

porcine enamel matrix derivative is highlighted by the chroma-
tography [1] and proteomics [61]. Our unexpected observation
that Emdogain-regulated gene expression in palatal fibroblasts
strictly requires TGF-BRI kinase signaling opens the door for
research on the respective ligands and other potential target cells.
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